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Abstract

Microwave-based remote sensing algorithms for mapping soil moisture are sensitive to water contained in surface vegetation at moderate

levels of canopy cover. Correction schemes require spatially distributed estimates of vegetation water content at scales comparable to that of

the microwave sensor footprint (101 to 104 m). This study compares the relative utility of high-resolution (1.5 m) aircraft and coarser-

resolution (30 m) Landsat imagery in upscaling an extensive set of ground-based measurements of canopy biophysical properties collected

during the Soil Moisture Experiment of 2002 (SMEX02) within the Walnut Creek Watershed. The upscaling was accomplished using

expolinear relationships developed between spectral vegetation indices and measurements of leaf area index, canopy height, and vegetation

water content. Of the various indices examined, a Normalized Difference Water Index (NDWI), derived from near- and shortwave-infrared

reflectances, was found to be least susceptible to saturation at high levels of leaf area index. With the aircraft data set, which did not include a

short-wave infrared water absorption band, the Optimized Soil Adjusted Vegetation Index (OSAVI) yielded best correlations with

observations and highest saturation levels. At the observation scale (10 m), LAI was retrieved from both NDWI and OSAVI imagery with an

accuracy of 0.6, vegetation water content at 0.7 kg m�2, and canopy height to within 0.2 m. Both indices were used to estimate field-scale

mean canopy properties and variability for each of the intensive soil-moisture-sampling sites within the watershed study area. Results

regarding scale invariance over the SMEX02 study area in transformations from band reflectance and vegetation indices to canopy

biophysical properties are also presented.
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1. Introduction

The Soil Moisture Experiment of 2002 (SMEX02) was

conducted to validate algorithms for retrieving soil moisture

estimates from microwave remote sensing data acquired

with aircraft and satellite-borne sensors. A specific focus in

SMEX02 was to study the effects of spatially variable

vegetation cover on soil moisture retrieval accuracy during

periods of rapid vegetation growth. The presence of surface

vegetation tends to obscure microwave emission from the
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soil, while enhancing the net flux with emission from water

contained within the biomass (Jackson & Schmugge, 1991).

While corrections based on vegetation water content can be

applied (Jackson & O’Neill, 1990; Jackson & Schmugge,

1991), the soil moisture signature can become essentially

undetectable at full canopy closure. Extensive ground-based

sampling of biomass and water content was undertaken

during SMEX02 to quantify the accuracy of retrieval

correction techniques. For use in calibrating remote retrieval

algorithms, these point measurements need to be upscaled to

provide spatially continuous coverage over the study region

at resolutions spanning the range in footprint of microwave

sensors utilized in this experiment (500 m to 75 km). In
ent 92 (2004) 447–464
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addition, measures of spatial variability are required for

analyzing retrieval sensitivity to expected errors in biomass

specification.

A related Soil Moisture–Atmospheric Coupling Experi-

ment (SMACEX; see, e.g., Kustas et al., this issue) ran

concurrently with SMEX02 across the same study domain.

A primary goal of SMACEX was to study the role of

heterogeneity in soil moisture and vegetation cover in

influencing land–atmosphere exchanges of energy, water,

and carbon over a range of spatial scales. During the

experiment, surface energy fluxes were measured continu-

ously at 14 eddy-covariance towers distributed across the

study area, and periodically along tracks flown by research

aircraft. Spatially and temporally distributed information

regarding crop height and leaf area are critical to SMACEX,

as these canopy properties influence surface roughness,

evaporation rates, and interpretation of remote sensing data.

Throughout the SMEX02/SMACEX experiment, inten-

sive soil and vegetation measurements were collected in and

around the Walnut Creek Watershed within a 6�30 km area

just south of Ames, IA (Fig. 1), with less-intensive sampling

in a 40�100 km area coincident with regional airborne

sensor scan lines. This sampling scheme was structured to

facilitate a multiple stage upscaling process. The sampling

sites are well resolved in multiband aircraft imagery

collected at 1.5-m resolution; correlations developed

between spectral vegetation indices (VIs) and ground

measurements can be used to produce maps of canopy

biophysical properties across the watershed. Satellite-based

radiometers, such as the Landsat 5 Thematic Mapper and
Fig. 1. Upscaled map of leaf area index over the Walnut Creek Watershed, derived

this date are soybean, while higher LAI fields are corn. Rectangles locate field-av

each sampling site; circles show positions of rain gauges referenced in Fig. 2.
Landsat 7 Enhanced Thematic Mapper+ (together referred

to here as TM), have lower resolution (30 m for shortwave

TM bands), but provide broader spatial coverage and can be

used to aggregate to the scale of microwave footprint.

Of the many existing VIs, the Normalized Difference

Vegetation Index (NDVI; Kriegler et al., 1969; Rouse et al.,

1973): NDVI=(NIR�R)/(NIR+R), where R and NIR are

reflectances in the red (~0.6 Am) and near-infrared (~0.8

Am) wavebands, respectively, has historically had the most

usage in terms of remote vegetation mapping, but is

susceptible to responses from the underlying soil under

partial canopy cover. The family of soil-adjusted VIs of

form (NIR�R)(1+L)/(NIR+R+L) include a factor L to

compensate for the noise caused by the soil background

(Huete, 1988). While the value of L was found to decrease

with increasing vegetation cover, Huete suggested L=0.5 as

an optimal value over the full range in cover. Numerical

canopy reflectance simulations by Rondeaux et al. (1996)

identified L=0.16 (the Optimized Soil Adjusted Vegetation

Index; OSAVI) as minimizing soil-induced variability in VI,

particularly for homogeneous canopies such as in grasslands

and agricultural crops.

Vegetation indices based on NIR and red reflectances are

problematic in that they tend to saturate at moderately high

values of LAI (~2.5–3), where additional leaf area has a

diminishing effect on canopy reflectance particularly in the

red band (e.g., Carlson et al., 1990; Sellers, 1987). A related

Normalized Difference Water Index (NDWI), computed

from NIR and shortwave infrared (SWIR; ~1.2–2.5 Am)

reflectances: NDWI=(NIR�SWIR)/(NIR+SWIR), has been
from TM NDWI data for July 1, 2002. In general, the lower LAI fields on

eraging boundaries used to aggregate biophysical properties to field scale at
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found to be more sensitive than NDVI to leaf area and water

content in closed canopies and saturates at higher LAI.

Hardisky et al. (1983) found good correlation between

canopy moisture and a form of NDWI (known as the

Infrared Index; II) using a SWIR band replicating TM band

5 (1.55–1.75 Am). Gao (1996) recommended a shorter

SWIR band at 1.24 Am, available on the Moderate

Resolution Imaging Spectrometer (MODIS), which is more

robust to atmospheric scattering.

The primary objectives of this paper are to (a) document

vegetation conditions during SMEX02 that are relevant to

microwave and land-surface modeling experiments, as

reflected in the ground samples themselves; (b) use

available aircraft and TM imagery to obtain robust estimates

of field-scale mean canopy conditions and variability; and

(c) form recommendations for upscaling to larger scales

commensurate with microwave sensor footprints using

remote sensing information. We focus on mapping canopy

properties of leaf area index (LAI; leaf area/ground area),

vegetation water content (hveg) and height (hc); quantities

that are integral to soil moisture retrieval and surface energy

balance modeling. While the practical utility of empirical

regressions between biophysical variables and vegetation

indices in terms of remote retrieval is necessarily limited to

the time and place over which the ground data are collected

(Gobron et al., 1997; Verstraete et al., 1996), the extensive

data set amassed during SMEX02 also provides more

general information regarding the scaling of these relation-

ships across agricultural landscapes.
2. Data

2.1. Ground observations

Within the Walnut Creek Watershed, 21 corn and 10

soybean fields were selected as sites for intensive soil

moisture and vegetation sampling (Fig. 1). Vegetation data

were collected within the watershed in four sampling rounds

between June 15 and July 8: 12 field sites containing flux
Fig. 2. Time sequence of vegetation sampling in the Walnut Creek Watershed durin

scenes used in this study. Lower panel shows daily precipitation measured at sev
towers were sampled in each round, and the remaining 19

sites were sampled twice, in rounds 2 and 4 (Fig. 2 and Table

1). The full sampling interval encompassed the period from

emergence to tasseling/full bloom in many area corn/soybean

fields, and also included an extended 2-week drought (from

6/21 to 7/4), which had a significant impact on soil moisture

and caused isolated regions of vegetation stress.

In each sampling round, multiple measurements of LAI,

stand density, canopy height, plant phenology, ground cover

percentage, and above-ground green and dry biomass were

taken at each sampling site, with vegetation water content

derived as the difference between green and dry biomass.

Because canopy architecture can influence microwave

scattering, plant biomass was separated into stem/stalk and

leaf subcomponents. In addition, digital photographs were

taken to provide a visual record of stand conditions at the

time the samples were collected.

2.1.1. Vegetation sampling strategy

Three vegetation-sampling locations were identified in

each of the 31 intensive watershed monitoring sites using

high-resolution aerial imagery collected on June 16, 2002:

one location with moderately high vegetation cover, one

with low cover, and a third representing average cover. Field

WC25 (shown in Fig. 3) was assigned an additional location

characterizing conditions on a sandy hillslope in the

northeast corner of the field, where crop growth was notably

stunted. Sampling locations were selected such that soil and

canopy conditions were fairly homogeneous in surrounding

areas on scales of tens of meters, and where the vegetation

appeared healthy and capable of surviving through the

experiment. A large (1.5�1.5 m) white aerial target was

installed at the corner of each sampling location to facilitate

registration of ground samples with respect to the aircraft

data. The coordinates of each target were recorded on the

ground with a handheld Global Positioning System (GPS)

unit, and each can be visually identified within the high-

resolution aircraft imagery.

Each vegetation sampling location was 12-m long and 10

rows across. For statistical purposes, measurements were
g the SMEX02 campaign. Also shown are dates of USU aircraft and Landsat

en rain gauges in the watershed (see Fig. 1 for gauge locations).



Table 1

Vegetation sampling conducted at the SMEX02 watershed sites

Site Cropa Row spacing Row direction Round 1 Round 2 Round 3 Round 4

WC01 C 0.76 E–W 6/29 7/6

WC03b S 0.38 N–S 6/18 6/28 7/2 7/5

WC04 C 0.76 E–W 6/30 7/8

WC05 C 0.76 N–S 6/28 7/5

WC06b C 0.76 N–S 6/18 6/27 7/3 7/7

WC08 C 0.76 N–S 6/28 7/5

WC09 S 0.38 N–S 6/28 7/7

WC10b S flexcoil n.a.c 6/18 6/29 7/2 7/7

WC11b C 0.76 N–S 6/18 6/28 7/2 7/8

WC12 C 0.76 N–S 6/29 7/5

WC13b S 0.76 E–Wd; N–Se 6/18 6/28 7/2 7/8

WC14b S flexcoil n.a.c 6/19 6/28 7/3 7/6

WC15b C 0.76 E–W 6/17 6/28 7/2 7/8

WC16b S 0.25d; 0.76e E–W 6/17 6/29 7/2 7/8

WC17 C 0.76 E–W 6/27 7/6

WC18 C 0.76 N–S 6/27 7/6

WC19 C 0.76 E–W 6/28 7/5

WC20 C 0.76 E–W 6/28 7/5

WC21 S 0.38 E–W 6/27 7/7

WC22 S 0.38 N–S 6/29 7/7

WC23b S 0.25 E–W 6/15 6/28 7/2 7/8

WC24b C 0.76 N–S 6/15 6/28 7/2 7/8

WC25b C 0.76 E–W 6/18 6/29 7/2 7/8

WC26 C 0.76 N–S 6/28 7/6

WC27 C 0.76 E–W 6/29 7/7

WC28 C 0.76 N–S 6/29 7/7

WC29 C 0.76 E–W 6/28 7/6

WC30 C 0.76 E–W 6/29 7/6

WC31 C 0.76 E–W 6/28 7/5

WC32 S 0.38 E–W 6/27 7/2 7/8

WC33b C 0.76 E–W 6/18 6/27 7/3 7/7

a C=corn; S=soybean.
b Eddy correlation flux tower/s located on-site.
c Not applicable: in flexcoil soybean plantings, seeds are broadcast uniformly rather than in rows.
d Conditions at sampling locations 1 and 2.
e Conditions at sampling location 3.
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taken in every second row yielding five sets of observations

per location. In the first sampling round, vegetation samples

were collected in the first 3-m segment closest to the aerial

target; in the second round, from the second 3-m segment,

etc. (see Fig. 3). For comparison with reflectance data, the

five measurements made at each location were averaged to

yield three data points per site per sampling round.

2.1.2. Vegetation height and stand density measurement

Average plant height in a 3-m segment in each sampling

row was estimated using a meter stick. In corn, this nominal

height estimate excluded the extreme tips of vertical leaves

to better represent the scale of the effective surface

roughness element.

In fields cultivated in rows, the areal stand density (ASD;

plants/m2) was determined by measuring the number of

plants within a 1-m segment selected randomly along the

sampling row (row density, RD; plants/m), and the row

spacing (RS; m): ASD=RD/RS. Two of the soybean fields

sampled (WC10 and WC14) were planted with a flexcoil

system, where seeds are broadcast uniformly rather than in
rows. For flexcoil plots, areal stand density was computed

as ASD=AD�2, where AD is the number of plants counted

within a wire frame with dimensions 1�0.5 m.

2.1.3. Vegetation water content measurement

Destructive above-ground biomass samples were col-

lected from each sampling row, totaling five plants per

location per sampling round. A plant of average height

was cut at the ground surface, separated into stem and leaf

components (except in the first sampling round, when

soybean plants were too small for separation), and placed

into two paper bags. The bags were oven dried to constant

weight for 4–5 days at 110 8F.
The leaf, stem, and total water content (hleaf, hstem, hplant;

g/plant) of each plant was computed as hleaf=(BgV�BdV)leaves,
hstem=(BgV�BdV)stem, and hplant=hleaf+hstem, where BgV is the

green biomass+bag weight of the component and BdV is the

dry biomass+bag weight. Tests showed that the change in

BgV during transport from field to laboratory was negligible

in most cases. Areal vegetation water content (hveg; kg/m
2)

is then given by hveg=10
�3�hplant�ASD.



Fig. 3. Schematic diagram demonstrating the vegetation sampling strategy employed in SMEX02. WC25 was assigned an additional sampling location to

characterize stunted crop conditions on a sandy hillslope in the northeast corner of the field.
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2.1.4. Leaf area index measurement

Leaf area index was measured using a LAI-2000 (LI-

COR, Lincoln, NE) Plant Canopy Analyzer, which

compares above- and below-canopy light levels detected

in five conical rings, with view zenith angle ranging from

nadir to 758, to infer LAI and characteristics of canopy

architecture (Welles & Norman, 1991). The LAI-2000

units were programmed to average four observations into

a single value, using one measurement taken above the

canopy and four beneath the canopy: in the row, 1/4 of

the way across the row, 1/2 of the way across the row,

and 3/4 of the way across the row. This gives a good

spatial average for row crops of partial cover. A mask

blocking a 1/4 wedge of the sensor view was positioned

to intercept direct solar radiation falling on the sensor

surface.

The LAI-2000 is most optimally used under diffuse

lighting conditions (overcast sky, or near dawn or dusk).

Direct beam radiation reflecting off upper leaves in the

canopy can cause these leaves to be indistinguishable from

the background sky brightness, thus the sensing system tends

to underestimate total leaf area (Welles & Norman, 1991).

During SMEX02, however, resource and time constraints

required that some data be collectedmidday during periods of

sunshine. To estimate the magnitude of this effect, 100

measurements were made under both sunny and diffuse

conditions in corn and soybean stands with LAI ranging from

0.2 to 3.3 and at solar zenith angles of 17–708. On average,

measurements made in sunny conditions were biased low by
10F1% (0.14 units of LAI on average) with respect to diffuse

measurements. All LAImeasurements made in sunshine have

therefore been increased by 10%.

2.1.5. Temporal and spatial variability in vegetation

conditions during SMEX02

Fig. 4 shows the time-development of canopy height,

LAI, and vegetation water content during SMEX02 in

each of the 31 watershed sampling fields. The variability

in canopy conditions near the end of the experiment is

considerable, reflecting differences in soil type, planting

dates, and cultivation practices. Note that site WC25

(corn) stands out as having a depressed growth pattern,

particularly in terms of LAI and water content. Visual

inspection showed the entire field lagging other corn-

fields in the watershed in terms of crop development,

possibly due to moisture stress related to high soil sand

content.

Two trends in canopy structure may be of note for

studies of microwave radiative transfer. While plant water

content (hplant) was found to be very well correlated with

green biomass (corn and soybean were 86% and 80%

water on average, respectively, with R2=0.997), the

fractional water content (hplant/green biomass) decreased

slowly with time at a rate of �0.28F0.01% day�1 on

average for corn and �0.31F0.02% day�1 for soybean

(see Table 2). While this may be due in part to

phenological changes, with the plant investing more

resources to dry mass and architectural stability as its



Fig. 4. Temporal variation in sampling location-averaged measurements (three per site) of vegetation water content, LAI, and canopy height.
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height increases, some extreme cases may be partially

stress induced. The allocation of above-ground biomass

between leaves and stems also varied through the

experiment. The fraction of total above-ground dry

biomass contained in leaves decreased at a rate of

�1.04F0.04% day�1 in corn and �1.33F0.10% day�1

in soybean, while the leaf to total water content ratio

decreased by �0.52F0.03% day�1 in corn and

�0.84F0.07% day�1 in soybean. Shifts in allocation of

biomass from leaves to stems occur in response to

increased demands for structural stability, saturation in

leaf light-gathering capacity, and translocation of materi-

als for grain/pod production.

Among the canopy properties emphasized here, hveg and

canopy height are both correlated with leaf area index

(R2~0.7), with different functional relationships for corn
and soybean (Fig. 5). Vegetation water content is linearly

related to LAI, while canopy height is better fit with a power

law, indicating a very early stage of rapid vertical growth with

little change in leaf area. The structural differences between

corn and soybean evident in Fig. 5 are further manifested in

relationships derived with spectral vegetation indices

(below).

2.1.6. Interpolation to remote imaging dates

To provide best estimates of canopy conditions at the

times of remote sensing image acquisition (Fig. 2), the row-

averaged ground data at each sampling location were

interpolated (or extrapolated) linearly in time between

sampling rounds. Given the relatively short sampling

interval (~5–10 days) and the small number of sampling

events per site (2–4), a piece-wise linear fit was deemed



Table 2

Rate of change (D) in three biophysical ratios measured in corn and soybean during SMEX02a

Ratio Cropb Nc D (% day�1) rD (% day�1) RMSD (%) Value (6/27) (%)

hplant/Bg C 826 �0.28 0.01 1.58 88.03

S 479 �0.31 0.02 2.67 82.51

Bd,leaf/Bd C 826 �1.04 0.04 7.81 55.11

S 404 �1.33 0.10 7.70 68.59

h leaf/hplant C 826 �0.52 0.03 5.60 36.54

S 404 �0.84 0.07 5.29 54.06

a Here h leaf and hplant are leaf and plant water contents, Bd and Bg are dry and green plant biomass, and Bd,leaf is leaf dry biomass. Additionally, N is the

number of samples, D is the rate of change in the ratio determined by linear regression with respect to sampling day, rD is the standard error in the rate, and

RMSD is the root mean square of the regression residuals. Also included is the regression estimated ratio for June 27.
b C=corn ; S=soybean.
c All plant samples were used in the regression. Only whole plant biomass and water content was measured in soybean during the first sampling round

(before June 27).

M.C. Anderson et al. / Remote Sensing of Environment 92 (2004) 447–464 453
adequate and better justified than nonlinear curve fitting.

Sampling data at a given site have been included in the

analysis only if the imaging date was bracketed by sampling

events (interpolation), or if the site was sampled within 2

days of the imaging date (extrapolation).
Fig. 5. Comparison of vegetation water content and canopy height measurements w

(water content) and power law (canopy height) fits.
2.2. Remote sensing observations

2.2.1. Aircraft reflectance data

Throughout SMEX02, high spatial resolution visible,

NIR and thermal imagery were collected periodically over
ith LAI observed in corn and soybean during SMEX02, overlaid with linear



M.C. Anderson et al. / Remote Sensing of Environment 92 (2004) 447–464454
the Walnut Creek Watershed with the Utah State

University (USU) airborne digital imaging system (Cai

& Neale, 1999; Neale & Crowther, 1994), mounted in the

belly of a twin engine Piper Seneca II aircraft. The data

used in this study were acquired on 6/16, 7/1, and 7/8 at

an altitude of 3200 m above ground level, resulting in a

nominal pixel resolution of 1.5�1.5 m in the shortwave

bands and a swath width of 3044 m. The shortwave

component of the system consists of three Kodak

Megaplus 4.2i digital cameras, with EPIX grabbing

boards recording images in binary format. Each camera

contains an 18.5�18.5 mm CCD chip having 2029(H) X

2044(V) light sensitive pixels. Interference filters were

used to record the canopy responses in the green (0.545–

0.560 Am), red (0.665–0.680 Am), and NIR (0.795–0.809

Am) wavebands, respectively (Table 3). An onboard GPS

was used to navigate along pre-planned flight lines over

the watershed, and to geo-reference the digital imagery.

On days of Landsat satellite overpasses, the entire study

region was imaged at high resolution such that the

acquisition time bracketed the Landsat overpass time.

Calibrated visible/NIR imagery was obtained using

incoming irradiance data measured with an Exotech radio-

meter with TM bands 1–4 placed over a leveled standard

barium sulfate reflectance panel with known bidirectional

reflectance properties. The radiometer was sampled every

minute throughout the duration of the flight. Outgoing

radiation was obtained with the system calibration equations

using the same radiometer. The calibration was conducted in

a separate experiment, relating image digital numbers with

radiometer radiance in the corresponding waveband for

different shutter speeds.

Finally, visible and near-infrared reflectances were

extracted from the calibrated imagery in areas coincident

with the 94 ground sampling locations. The associated aerial

target was located in the imagery, and a 10 row�10 m

subarea approximating each sampling location was selected

at the appropriate orientation with respect to the target. Band

reflectances were linearly averaged over these subareas. A

final calibration check with respect to Landsat was then

applied (see Section 2.2.2).
Table 3

Remote sensing imaging bands available with the USU aircraft and Landsat

5 (L5) TM and Landsat 7 (L7) ETM+ instruments

USU # Landsat

Band

(Am)

Resolutiona

(m)

Band

(Am)

Resolution

(m)

Blue 1 0.45–0.52 30

Green 0.545–0.560 1.5 2 0.52–0.60 30

Red 0.665–0.680 1.5 3 0.63–0.69 30

NIR 0.795–0.809 1.5 4 0.76–0.90 30

SWIR 5 1.55–1.75 30

SWIR 7 2.08–2.35 30

Thermal 10.5–12.5 6 6 10.40–12.50 120 (L5);

60 (L7)

a Effective spatial resolution at 3200-m altitude.
2.2.2. Landsat reflectance data

During the time the USU aircraft was in Iowa, Landsat

scenes with minimal cloud cover over the watershed were

acquired on 6/23 (Landsat 5), and 7/1 and 7/8 (Landsat 7).

The original level 1G TM data were geo-registered with

respect to road intersections, then atmospherically corrected

with the MODTRAN radiative transfer model (Berk et al.,

1998) using radiosonde data and default aerosol profiles.

These atmospheric corrections were compared with results

obtained using the Simulation of the Satellite Signal in the

Solar Spectrum (6S; Vermote et al., 1997) software package

and found to be consistent (Jackson et al., 2004). Details

regarding the TM calibration process are described by

Jackson et al. (2004) and Li et al. (2004).

Because the aerial targets could not be resolved in the 30-

m Landsat imagery, reflectances at ground-sampling loca-

tions were extracted by selecting the pixel closest to the

recorded GPS coordinate, or by averaging two adjacent

pixels when the target lay on a pixel boundary.

Imagery from both Landsat and the USU aircraft were

concurrently available on 7/1 and 7/8. Statistical compar-

isons between calibrated reflectances in the green, red, and

NIR bands at the sampling locations showed residual biases

(aircraft-TM) of 0.039, 0.015, 0.001, respectively, due to

uncorrected atmospheric effects in the airborne imagery. To

improve comparability between data sets, the USU reflec-

tances were offset by these amounts.

2.2.3. Landcover classification

A supervised classification was conducted by Doraisw-

amy et al. (2004) using a 12-band image set covering the

regional SMEX02 domain, consisting of bands 3,4,5, and

7 extracted from Landsat images acquired on May 14, July

1, and July 17, 2002. The overall classification accuracy

was 95% in comparison with ground truth data collected in

June and July. Within the Walnut Creek Watershed domain

(Fig. 1), corn and soybean occupied 86% of the total area,

with an additional 7% in roads, 4% grass, 2% trees, and

trace proportions of pixels classified as urban and alfalfa.

Of the total area covered by corn and soybean, corn

comprised 48% of the pixels and soybean, 52%.
3. Development of retrieval relationships

Again, a primary objective of this study is to develop

functional relationships between remotely sensed vegetation

indices and ground observations of canopy biophysical

properties that can be used to obtain robust spatial averages

and measures of variability over a range in scales. Scales of

interest include the bobservation scaleQ, the area represented
by ground measurements acquired during SMEX02

(~10�10 m); the bfield scaleQ, nominal patches in the

landscape over which conditions are relatively homoge-

neous (~500�500 m on average over the watershed); and

the scale of the microwave sensor footprint (up to 75 km).
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At each ground sampling location in the watershed

study area, vegetation indices were computed from

collocated aircraft red and NIR and TM band 3, 4, and 5

reflectances obtained as described in Section 2.2. NDVI

and OSAVI indices were generated from both data sets,

while the inclusion of the SWIR band 5 in the TM sensor

additionally allowed computation of the water-sensitive

NDWI index. Fig. 6 shows the relationships between the

OSAVI and NDWI indices and time-interpolated measure-
Fig. 6. Comparison of measurements of LAI (top row), vegetation water conten

extracted from USU aircraft and TM imagery. Solid lines represent expolinear fits o

to the aircraft OSAVI indices (left column) are also plotted on the TM OSAVI d

leftmost panel shows a pure exponential fit to LAI vs. OSAVIUSU. Solid circles ind

excluded from all regressions.
ments of LAI, hveg, and canopy height. Of the indices

studied, NDWI showed the greatest sensitivity to biophys-

ical properties at high LAI. If a saturation threshold is

defined where a given VI, averaged within LAI bins of

width 0.5, reaches 95% of the full range in binned VI, then

NDVI saturates at LAIc3.5, OSAVI at LAIc4.0, and

NDWI at LAIc4.5.

From a temporal standpoint, Fig. 7 indicates that indices

computed from red and NIR reflectances at the 94 sampling
t (middle row), and canopy height (bottom row) with vegetation indices

f the form in Eq. (1) (coefficients listed in Table 4); fits derived with respect

istributions (middle column). For comparison, the dotted line in the upper

icate data collected at WC25 during the fourth sampling round, which were



Fig. 7. Temporal variation in NDVI, OSAVI, and NDWI vegetation indices computed from USU aircraft and Landsat reflectances at corn and soybean

sampling locations during SMEX02.
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locations began to saturate in corn between July 1 and 8,

while the LAI measured at most sites continued to increase

(Fig. 4). During this week, cornfields in the watershed

began tasseling, while soybean entered full bloom. Other

studies have noted a saturation or downturn in NDVI at

tasseling, attributed to concomitant changes in chlorophyll

absorption resulting in increased reflectance in the visible

wavelengths (Gitelson et al., 2003; Vogelmann & DeFelice,

2003). Using a hand-held radiometer, Tucker et al. (1979)

observed maximum NDVI in corn occurring between the
12-leaf stage and first tassel. In soybean, the turnover did

not occur until the appearance of first pod; only a small

change in slope was observed at full bloom. This is

consistent with results in Fig. 7 showing that indices over

soybean did not saturate during SMEX02, although LAIs

approaching 4.0 were attained (Fig. 4). The NDWI index

did not saturate over either crop.

As evidenced in Fig. 6, the TM VIs show consistently

greater scatter with respect to ground observations than do the

aircraft derived indices. Before canopy closure, significant
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subfield heterogeneity existed at scales exceeding ~10 m due

to variable soils, slopes, and weed densities. While the

individual sampling locations were well resolved at the meter

scale, the 30-m TM data are affected to some extent by

subpixel heterogeneity, weakening the correlation with VI.

Note that data collected at WC25 during the 4th sampling

round (highlighted in Fig. 6) are outliers from the general

distributions, indicating unusual growing conditions (stress)

or atypical reflectance contributions from the sandy back-

ground soil.

Of the total set of reflectance vs. biophysical variable

data points plotted in Fig. 6, 65% were randomly selected

and used to fit functions of the form

y ¼ a� VI þ bð Þ � 1þ c� exp d � VI½ �ð Þ ð1Þ

where y is LAI, hveg, or canopy height, and VI is OSAVI

derived from the aircraft data set (OSAVIUSU) or NDWI

from the Landsat reflectances (NDWITM); the resulting

regression coefficients are listed in Table 4. Data collected

during the 4th sampling round at WC25 have been omitted

from the regressions, as these data are recognized as outliers

and served to corrupt the general trends. As evident in Fig. 6

and also noted by Thenkabail et al. (1994), the relationships

between LAI and the VIs tested are similar for corn and

soybean, while hveg and hc require crop-specific functionals.

Given the significant structural differences between corn

and soybean canopies (Fig. 5), this is not surprising.

Regressions developed against the aircraft OSAVI data

translate well to the TM OSAVI distributions, despite the

larger scatter (Fig. 6).

One functional advantage to the expolinear regression

form given in Eq. (1) is that the linear section (at low VI)

extrapolates to bare soil conditions (i.e., LAI=hveg=hc=0)
at reasonable values of VI. Each fit in Fig. 6 has been
Table 4

Statistical performance of canopy property retrievals using regression equations o

y VI Regression coefficients

Cropb a b c

LAI OSAVIUSU B 4.00 �0.80 4.73e�6

OSAVITM Using USU regression

NDWITM B 2.88 1.14 1.04e�1

hveg (kg m�2) OSAVIUSU C 3.45 �0.69 3.25e�5

S 0.58 �0.10 2.69e�1

OSAVITM Using USU regressions

NDWITM C 2.20 0.90 1.40e�1

S 0.70 0.31 1.76e�1

hc (m) OSAVIUSU C 1.86 �0.20 4.82e�7

S 0.55 �0.02 9.98e�5

OSAVIUSU Using USU regressions

NDWITM C 1.20 0.60 4.00e�2

S 0.50 0.26 5.00e�3

a Here, N is the number of observations, Ō is the mean observed value, RMSD

(O) quantities, MBE is the mean-bias-error (P̄ �Ō), R2 is the coefficient of dete

between P and O divided by the mean observed flux.
b C=corn; S=soybean; B=both corn and soybean.
forced through zero (bare soil) at the same value of VI (at

OSAVI=0.2, and NDWI=�0.4) to provide consistency

between retrieved biophysical properties. The selection of

these bare-soil limits was driven primarily by the

distributions of LAI and hveg vs. VI among the soybean

sites, which had very low values during the first sampling

round. In contrast, the canopy-height data approach some

small but non-zero value at these VI limits. This is

consistent with the height vs. LAI comparisons in Fig. 5,

which show that height increases nonlinearly with respect

to leaf area at very early stages. For ease of computation,

this physiological phenomenon is accommodated by a

step function at the zero-canopy threshold in VI (Fig. 6).

Statistical measures of retrieval performance, including

the root-mean-square deviation (RMSD), mean bias error

(MBE), and the coefficient of determination (R2) between

modeled and measured values, were computed using the

remaining 35% of the data points, which were not

utilized in the regressions and therefore constitute an

independent validation set. These statistics are listed in

Table 4, with graphical comparisons of observed vs.

modeled values given in Fig. 8: the accuracy of LAI

retrieval as measured by the RMSD was 0.6, vegetation

water content �0.7 kg m�2, and canopy height �0.2 m,

with fractional errors on the order of 15–20%. At the

observation scale, the higher-resolution OSAVIUSU data

predicted LAI with better skill, but was comparable in

accuracy to NDWITM in retrieving hveg and hc. Retrievals

based on OSAVITM data were consistently poorer than

NDWITM retrievals (Table 4), primarily due to the lower

saturation limits associated with the OSAVI. We can

therefore surmise that if the SWIR band had been

sampled from the aircraft platform, NDWIUSU would be

the preferable retrieval base in this setting, especially

under full-canopy conditions.
f the form y=(a�VI+b)(1+c�exp[d�VI])a

Comparison with observations

d N Ō RMSD MBE R2 % Error

15.64 60 2.59 0.58 �0.09 0.85 14.9

69 2.62 0.84 �0.12 0.64 21.4

4.10 69 2.62 0.66 �0.02 0.76 17.8

13.57 64 2.44 0.67 �0.06 0.87 19.0

2.31

74 2.55 0.90 �0.18 0.76 24.5

4.80 74 2.55 0.66 �0.07 0.87 18.3

3.52

17.69 64 1.08 0.18 �0.00 0.93 11.9

9.52

74 1.10 0.27 �0.03 0.84 16.9

5.30 74 1.10 0.20 �0.06 0.92 12.3

4.50

is the root-mean-square difference between the modeled ( P) and observed

rmination, and the percent error is defined as the mean-absolute-difference



Fig. 8. Comparison of measured LAI, vegetation water content, and canopy height with modeled values retrieved from OSAVIUSU (left) and NDWITM (right)

imagery at the observation scale (~10 m). These data points represent 35% of the total collected, and were not used in developing the regression equations used

in the retrievals.
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4. Upscaling canopy biophysical properties

While many techniques of varying complexity have

been developed for spatially aggregating data on regular

grids (see, e.g., Quattrochi & Goodchild, 1997), here we

use simple linear averaging within nonoverlapping win-

dows. For a transformation y=g(x), an aggregated value of
y (hyi) can be obtained by: (A) computing y using the full

resolution x, then aggregating y (hyi=hg(x)i); or (B)

aggregating x , then applying the transformation g

(hyi=g(hxi)). If the two methods agree over the operational

range in spatial scales, the transformation is effectively

scale invariant. While the transformation from radiance (x)

to NDVI ( y) is not strictly scale-invariant, biases between
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methods A and B are generally minor for vegetated

landsurfaces (e.g., De Cola, 1997; Friedl et al., 1995; Hall

et al., 1992). The same is not necessarily true for the

transformation from VI (x) to biophysical property ( y). The

agreement between methods A and B will depend on the

nonlinearity of the transformation function, g, and the level

of subcoarse-pixel heterogeneity in x with respect to this

nonlinearity, which will be scale- and scene-dependent.

4.1. Field-scale mean properties and variability

To obtain best estimates of field-scale vegetation

conditions and in-field variability during SMEX02,

aggregation method A was employed at each watershed

soil-moisture-sampling site over large rectangular regions

defined to lie within field boundaries, excluding roads,

farmhouses, lawns, etc. (see Fig. 1). Using landcover

classification information, crop-appropriate regression

equations (Table 4) were applied to the 1.5-m aircraft

OSAVI and 30-m Landsat NDWI data, yielding gridded

maps of LAI, hveg, and hc at corresponding resolutions.

Unrestricted, the steep exponential fit at high VI can

potentially generate absurdly high values at isolated

pixels; thus, retrieved values were limited to the range

observed (and expected) during SMEX02: LAI was

capped at 6.0, hveg at 8 kg m�2, and hc at 2.5 m. These

maps were then aggregated within each site boundary;

field-scale averages and standard deviations for the four

imaging dates are tabulated in Table A1 in Appendix A.

While results from both TM VIs are statistically similar for

June 23, the standard deviations in the OSAVITM retrievals

for the July dates are typically 50% higher than those from

NDWITM due to the steepness of the retrieval function at

full canopy cover. At these later dates, NDWI provides a

more conservative estimate of spatial variability.

The remotely upscaled values listed in Table A1

contain better information regarding mean field proper-

ties than do the ground samples themselves. For

example, in field WC16 on July 8, upscaling gives

field-scale LAI values of 2.9–3.2 for aircraft and TM

retrievals while the ground-sample average is 1.6

(excluding location 3, which had atypically wide row

spacing; Table 1). In this case, each of the sampling

locations was sited in areas that ultimately produced

relatively low yield, thus ground-sample averages under-

estimate the true mean field conditions. The remote

sensing data provide a means for spatially weighting in-

field variability, making unrepresentative sampling sites

less problematic as long as a wide range in conditions

are measured overall.

Fig. 9 displays a time series of LAI maps for sites

WC15 and WC16, retrieved from the OSAVIUSU and

NDWITM imagery. These fields are of particular impor-

tance to the SMACEX experiment, as a volume-imaging

lidar system was sited at the interface between these

fields to collect observations of atmospheric turbulence
and evaporative fluxes over corn and soybean canopies

(Eichinger et al., 2003). Additionally, two eddy correla-

tion stations were deployed in each field. The aircraft

imagery reveals small-scale structure in canopy cover in

both fields, primarily reflecting varying soil conditions

and topographic relief. Islands of dense weeds in WC16,

apparent in the June imagery, have been eradicated with

herbicide by 1 July leaving holes in the developing

soybean canopy. The imprint of a decommissioned

railroad line runs across WC15, reflecting local distur-

bances in soil texture and bulk density. This type of

detailed spatial information will be critical to interpreting

lidar results and in determining fetch conditions influenc-

ing eddy correlation data.

The June 16 and 23 maps reflect the rapid crop growth

observed in the watershed over this interval. Between July

1 and 8, however, the aircraft VIs are predicting a small

decrease in mean LAI in WC15 (corn) contrary to both

observations and TM predictions, which indicate contin-

ued growth. This is presumably an artifact of saturation

and downturn in the OSAVI index associated with

tasseling in corn; field notes indicate that tasseling was

initiated in WC15 in the week before July 8. Note that

the OSAVI-derived LAI for WC16 (soybean) has not yet

reached saturation by July 8 although the canopy was at

full bloom, in agreement with spectral-phenological

behavior observed by Tucker et al. (1979). In this case,

saturation effects in the OSAVIUSU fields may be

exacerbated by the narrow bandwidth of the aircraft

sensors.

4.2. Scale dependence of retrieval relationships

To assess the effect of the resolution of the remote

sensing information used in the retrieval of canopy

properties over the SMEX02 study area, aggregation

methods A and B were used to upscale transformations

from TM (NIR and SWIR) reflectances to NDWI, and

from NDWI to biophysical properties. TM reflectance and

NDWI data were aggregated from 30 m to 100 m, 200 m,

500 m, 1 km, and 5 km scales, simulating response to

lower resolution sensors (the SWIR band on MODIS, for

example, has 500-m resolution). These experiments

demonstrate that while NDWI is effectively scale invar-

iant over these scales in the Walnut Creek watershed,

retrieval of LAI, hveg and hc from remote sensing data at

resolutions coarser than field-scale will impose a negative

bias in the upscaled quantities (Fig. 10).

Given the almost even distribution of land-use in the

Walnut Creek watershed between corn and soybean, the

upscaling process can be approximated as hyi=hgi(xi)i
(aggregation method A) where i indicates the landcover

class of each high-resolution pixel, assumed to be pure

at the 30-m scale; or as hyi=fc gc(hxi)+fs gs (hxi) (method

B), where f indicates the fraction of the coarse-scale

pixel populated by corn (subscript dcT) or soybean (dsT).



Fig. 9. Time series of LAI maps over sites WC15 and WC16, derived from OSAVIUSU (left) and NDWITM (right) images. Numbers in italics represent the field-

average retrieved LAI. Large squares in first panel specify averaging boundaries, small squares show sampling locations (not to scale), crosses indicate flux

towers, and the star indicates the position of the imaging lidar.
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Here, pixels not classified as corn or soybean (~15% of

the scene) have been excluded from the aggregation.

At the 100–200-m scale, and selecting only coarse-scale

pixels that are pure corn or soybean (no mixtures), these two

methods for aggregating biophysical properties agreed with

an R2 exceeding 0.99 and negligible bias. This suggests that
the aggregation process, in this case, is independent of the

scale of the VI data up to the field scale. Despite the in-field

heterogeneity endemic to this landscape, it appears that the

bulk of the conditions within a given field were confined to

near-linear segments of the expolinear regression functions

in Fig. 6.



Fig. 10. Scale dependence of transformations from reflectance to NDWI (first column) and from NDWI to biophysical properties of LAI and vegetation water

content (remaining columns). Aggregation methods A and B (described in text) are compared in upscaling from the 30-m native resolution of the TM-NIR and

SWIR sensors to scales of 500 m (top row), 1 km (middle row), and 5 km (bottom row). Two aggregation scenarios are presented for hveg; one using only

information about the dominant class in each coarse-resolution cell (bdominant classQ), and a second assuming subpixel corn/soybean cropping fraction data are

available (bmixed classQ).
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At sensor resolutions coarser than the nominal field-

scale, however, it is clear that subpixel mixing of different

crop types will begin to affect the upscaling process,

particularly for hveg and hc, which have crop-dependent

functional relationships with VI (Fig. 6). Over this land-

scape, LAI remains effectively scale invariant because corn

and soybeans can be adequately described with a single

function. The positive curvature in the retrieval function

causes a small negative bias (�0.17 units of LAI at the 5-km

scale) in values aggregated through method B (Fig. 10).

Given only information regarding the dominant cover type

within a mixed coarse-scale cell (i.e., either fc=1 or fs=1),

vegetation water content retrievals can be significantly

degraded (bdominant classQ panels shown in Fig. 10).

Retrievals of canopy height (not shown) are similarly

affected. In this case, pixels that contain slightly more than

half soybean and therefore assigned a soybean class are

significantly underestimated. These gross discrepancies can

be alleviated to some extent if land classification information

is available on subpixel scales that can be used to reliably

compute the fraction of corn and soybean within each coarse-

scale cell. The utility of this subpixel information is
demonstrated in Fig. 10 (bmixed classQ panels); the aggrega-
tion is improved in comparison with method A, yet still not

scale invariant. At the 5-km scale, the residual bias is 0.5 kg

m�2 for hveg and 0.14 m for hc, comparable to the RMSD

values associated with the high-resolution retrievals them-

selves.

These results support work by DeFries et al. (1997),

who aggregated biophysical parameters from the 8-km

scale to the 1�1 deg (110�110 km at equator) and 4�5

deg scales typical of many continental and global

modeling schemes. They found that inclusion of subpixel

classification information improved the accuracy of

roughness estimates (dependent on canopy height), but

that improvements were modest over these scales. Fig. 10

suggests the benefits may be more significant on smaller

scales, closer to the nominal patch size.
5. Conclusions

Vegetation indices derived from multispectral reflectance

data collected at 1.5-m resolution by aircraft and at 30-m



ble A1

eld-scale mean and standard deviation (in italics) in LAI, vegetation water content, and canopy height for each SMEX02 watershed-sampling site, computed within field bounding boxes shown in Fig. 1 from

trievals based on OSAVIUSU, OSAVITM, and NDWITM data sets

Leaf area index (m2/m2) Vegetation water content (kg/m2) Canopy height (m)

16 June

OSAVIUSU

23 June

OSAVITM

1 July

NDWITM

8 July

NDWITM

16 June

OSAVIUSU

23 June

OSAVITM

1 July

NDWITM

8 July

NDWITM

16 June

OSAVIUSU

23 June

OSAVITM

1 July

NDWITM

8 July

NDWITM

C01 -unavailablea- 1.83 0.21 3.19 0.40 4.20 0.35 unavailablea 1.69 0.22 3.05 0.47 4.41 0.47 unavailablea 0.99 0.08 1.31 0.14 1.69 0.13

C03 0.40 0.10 0.84 0.21 1.63 0.20 2.76 0.19 0.12 0.02 0.24 0.06 0.47 0.06 0.79 0.06 0.15 0.01 0.21 0.03 0.31 0.02 0.42 0.02

C04 0.98 2.17 2.04 0.36 3.64 0.40 4.63 0.32 0.85 0.20 1.92 0.39 3.64 0.51 5.02 0.46 0.63 0.10 1.06 0.13 1.48 0.15 1.86 0.13

C05 1.18 0.16 2.05 0.17 3.42 0.29 4.27 0.31 1.03 0.14 1.92 0.19 3.34 0.36 4.50 0.42 0.72 0.07 1.07 0.06 1.40 0.10 1.72 0.12

C06 1.07 0.21 2.33 0.39 3.69 0.49 4.64 0.56 0.93 0.19 2.24 0.43 3.72 0.62 5.05 0.76 0.67 0.09 1.16 0.13 1.50 0.18 1.87 0.21

C08 0.99 0.18 1.94 0.24 3.50 0.25 4.37 0.26 0.85 0.16 1.80 0.26 3.44 0.33 4.64 0.37 0.63 0.08 1.03 0.09 1.43 0.09 1.76 0.10

C09 0.56 0.20 1.20 0.20 1.83 0.18 2.89 0.22 0.16 0.06 0.35 0.07 0.52 0.05 0.83 0.06 0.17 0.03 0.25 0.03 0.33 0.02 0.43 0.02

C10 0.64 0.15 1.18 0.13 1.99 0.18 2.91 0.30 0.18 0.04 0.34 0.04 0.57 0.05 0.83 0.09 0.18 0.02 0.25 0.02 0.35 0.02 0.43 0.03

C11 1.10 0.27 2.03 0.27 3.44 0.35 4.33 0.24 0.96 0.25 1.91 0.29 3.37 0.44 4.58 0.33 0.68 0.12 1.06 0.10 1.41 0.13 1.74 0.09

C12 0.95 0.16 1.83 0.21 3.14 0.33 4.09 0.34 0.82 0.14 1.69 0.23 2.99 0.40 4.25 0.47 0.61 0.08 0.99 0.08 1.30 0.12 1.65 0.13

C13 0.23 0.11 0.69 0.17 1.28 0.20 2.01 0.22 0.07 0.03 0.19 0.05 0.37 0.06 0.57 0.06 0.12 0.02 0.19 0.02 0.26 0.02 0.35 0.02

C14 0.72 0.29 1.22 0.30 1.97 0.26 2.96 0.21 0.20 0.08 0.35 0.10 0.56 0.08 0.85 0.06 0.19 0.04 0.26 0.04 0.35 0.03 0.44 0.02

C15 1.07 0.22 2.06 0.25 3.45 0.26 4.50 0.24 0.93 0.20 1.94 0.28 3.38 0.34 4.83 0.34 0.67 0.10 1.07 0.09 1.41 0.10 1.81 0.09

C16 0.63 0.36 1.24 0.27 1.87 0.24 2.85 0.31 0.18 0.10 0.36 0.08 0.53 0.07 0.82 0.09 0.18 0.04 0.26 0.03 0.34 0.03 0.43 0.02

C17 0.86 0.18 1.97 0.18 3.58 0.22 4.75 0.27 0.74 0.16 1.84 0.19 3.55 0.29 5.20 0.40 0.57 0.08 1.04 0.06 1.46 0.08 1.91 0.11

C18 1.06 0.18 2.13 0.24 3.60 0.25 4.40 0.39 0.92 0.16 2.02 0.26 3.58 0.33 4.70 0.52 0.67 0.08 1.10 0.08 1.47 0.09 1.77 0.15

C19 1.12 0.31 1.95 0.20 3.34 0.27 4.14 0.39 0.98 0.29 1.82 0.22 3.24 0.34 4.33 0.53 0.69 0.13 1.03 0.07 1.37 0.10 1.67 0.15

C20 1.32 0.34 2.25 0.33 3.45 0.35 4.38 0.41 1.17 0.33 2.15 0.37 3.39 0.45 4.67 0.58 0.78 0.15 1.13 0.11 1.41 0.13 1.77 0.16

C21 0.45 0.21 1.01 0.23 1.54 0.27 2.22 0.40 0.13 0.05 0.29 0.07 0.44 0.08 0.64 0.12 0.15 0.03 0.23 0.03 0.30 0.03 0.37 0.04

C22 0.13 0.08 0.37 0.14 1.09 0.12 1.74 0.23 0.05 0.02 0.11 0.03 0.31 0.03 0.50 0.07 0.11 0.01 0.14 0.02 0.24 0.02 0.32 0.03

C23 0.34 0.13 0.84 0.16 1.78 0.22 2.76 0.28 0.10 0.03 0.24 0.05 0.51 0.06 0.79 0.08 0.14 0.02 0.21 0.02 0.33 0.03 0.42 0.02

C24 1.23 0.19 2.18 0.28 3.73 0.26 4.62 0.21 1.08 0.18 2.07 0.30 3.75 0.33 5.01 0.31 0.74 0.09 1.11 0.10 1.51 0.10 1.86 0.08

C25 1.02 0.25 1.34 0.28 2.26 0.47 2.83 0.59 0.88 0.22 1.19 0.27 1.99 0.48 2.64 0.66 0.64 0.11 0.79 0.12 0.98 0.17 1.19 0.21

C26 1.01 0.21 1.84 0.33 3.53 0.43 4.43 0.60 0.88 0.20 1.71 0.35 3.50 0.55 4.75 0.81 0.64 0.10 0.99 0.13 1.44 0.16 1.79 0.23

C27 0.45 0.19 1.03 0.25 2.25 0.39 3.48 0.42 0.39 0.16 0.90 0.23 1.97 0.41 3.43 0.53 0.38 0.09 0.65 0.11 0.98 0.14 1.42 0.15

C28 1.19 0.29 2.15 0.37 3.74 0.33 4.72 0.27 1.04 0.27 2.04 0.40 3.77 0.44 5.16 0.40 0.72 0.13 1.10 0.13 1.52 0.12 1.90 0.11

C29 1.25 0.29 1.98 0.40 3.93 0.56 5.01 0.52 1.10 0.27 1.86 0.43 4.05 0.73 5.60 0.76 0.75 0.13 1.04 0.15 1.59 0.21 2.02 0.21

C30 1.19 0.29 1.95 0.36 3.69 0.35 4.67 0.32 1.04 0.28 1.83 0.38 3.71 0.45 5.09 0.46 0.72 0.13 1.03 0.13 1.50 0.13 1.88 0.13

C31 1.45 0.18 2.22 0.28 4.14 0.37 5.23 0.51 1.29 0.18 2.12 0.31 4.33 0.50 5.94 0.75 0.84 0.08 1.13 0.10 1.67 0.14 2.11 0.20

C32 0.37 0.15 0.90 0.18 1.56 0.18 2.31 0.26 0.11 0.04 0.25 0.05 0.44 0.05 0.66 0.08 0.14 0.02 0.21 0.02 0.30 0.02 0.38 0.03

C33 0.76 0.19 1.59 0.21 3.06 0.32 4.13 0.31 0.65 0.17 1.44 0.21 2.90 0.38 4.30 0.43 0.53 0.09 0.90 0.09 1.27 0.11 1.67 0.12

a USU aircraft imagery did not include WC01.
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resolution by Landsat over the Walnut Creek Watershed

during the SMEX02/SMACEX experiments were used to

develop regression equations with respect to an extensive set

of ground-based measurements of leaf area index, vegeta-

tion water content, and canopy height. The remote sensing

data provide means for spatially weighting in-field varia-

bility in upscaling the ground data to field scale and larger

scales. They also allow estimation of canopy conditions in

fields in the study area that were not sampled. At the

observation scale (~10 m), retrieval accuracy is 15–20%,

with root-mean-square deviations of 0.6 in LAI, 0.7 kg m�2

in vegetation water content, and 0.2 m in canopy height.

Given the patchwork spatial structure characteristic of the

central Iowa landscape, it was demonstrated that the process

of aggregating canopy conditions up to field scales was

independent of the resolution of the remote sensing data used

provided that individual fields are well resolved by the

imagery, eliminating pixels of mixed land-cover types. This

indicates that the variability between canopy properties and

vegetation indices that exist within fields is largely linear.

Variability between fields can be strongly nonlinear, partic-

ularly for canopy height and vegetation water; thus, imagery

at resolutions coarser than field scale (~500m) will yield poor

aggregate values unless subpixel information about cropping

fractions is available. The transformation from reflectance to

NDWI in this landscape, however, is effectively scale

invariant over scales from 30 m to 5 km.

The NDVI and OSAVI indices suffer saturation over

cornfields near the end of SMEX02when LAI exceeds 3–3.5,

degrading spatial averages and amplifying variability in

biophysical properties retrieved using these indices. Soybean

is not affected by saturation during SMEX02. The Landsat

TM includes a SWIR band used in the NDWI index, which

has greater sensitivity to vegetation water content and does

not saturate over the course of the experiment, extending the

retrieval saturation limit to LAIN4. Of the indices studied,

NDWI is therefore preferable for upscaling ground-based

canopy measurements made during the latter half of

SMEX02. Maps of biophysical properties retrieved from

meter-scale-resolution imagery collected by aircraft will be

valuable for detailed in-field studies of soil moisture

variability and simulations of land-atmosphere coupling.
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Appendix A

For the benefit of scientists working with data collected

during the SMEX02 and SMACEX experiments, best

estimates of field-scale mean canopy properties and in-field

variability for four days during SMEX02, at each of the

sampling sites in the Walnut Creek Watershed, are tabulated

in Table A1. These spatial statistics have been retrieved from

the full-resolution aircraft and Landsat remote sensing data

sets as described in the main text. Retrievals using the

OSAVI index are reported for June 16 and 23, when the

scene contained partial ground cover. For July 1 and 8, when

OSAVI is showing signs of saturation, NDWI-based

aggregate values are given.
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